

Dubai 13th Research 2025 Conference

An Optimisation Model for Multi-period, Multi-project Logistics Problem with Capitated Storage and Heterogenous Fleet

Vettri Velavan Janarthanasamy ^a Nandakumar Manickam ^b Chandrasekharan Rajendran ^a

a Indian Institute of Technology Madras, India

b Nanwin energy LLP, India

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Introduction

- In today's competitive world, organisations undertake various projects to achieve their goals and drive growth.
- · Logistics plays an important role in the execution of projects.
- In multi-project environments, a group of independent projects are managed simultaneously. They share at least some common pool of limited resources (He et al., 2022).

Motivation

 Literature lacks a comprehensive study that considers vehicle allocation, routing, and inventory decisions in a multi-project and multiperiod setting with a reallife case study.

Contribution

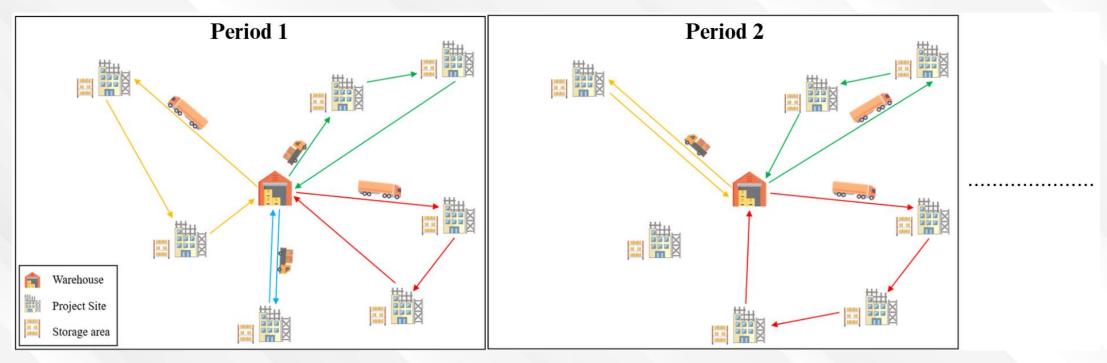
- A bi-objective optimisation framework.
- Integration of multiple interdependent decisions, such as heterogeneous vehicle allocation, routing, inventory management, and storage leasing.
- A real-life case study.

Literature review

LEADING THE WAY INTO THE FUTURE

		Enviro	nment	Objective	function			Decisions		Multi- period
Reference	Year	Single project	Multi- project	Single objective	Multi- objective	Objective function(s)	Vehicle allocation	Routing	Inventory	
Alinaghian and Zamani	2019				√	Min. emissions, Min. fuel cost	√	√	✓	√
RezaHoseini et al.	2021		✓		√	Min. total costs, Min.	√		✓	
Ferreira et al.	2021			✓		Min. emissions	√	✓		
Abdzadeh et al.	2022		√	✓		Min. total costs	√	1	√	
Afra and Kheirkhah	2023		√	√		Min. total costs			√	✓
Asadujjaman et al.	2024		√	√		Max. NPV			√	✓
Wang et al.	2024		√		✓	Min. total transportation time, Min. total costs	√	√		
Aliahmadi et al.	2024		√		√	Min. project delay, Min. total costs, Min. environmental impact			√	√
Darabad et al.	2024		√		✓	Min. total costs, Min.	√	✓		✓
This study	2025		✓		√	Min. total costs, Min. emissions	√	√	√	✓

Summary of Relevant Studies


Problem description

- This problem involves the transportation of resources from a central warehouse to multiple project sites.
- Each site has specific resource demands and time constraints.
- Delays in transportation will incur a backorder cost, representing the crashing cost required to compensate for lost time and to keep the project on track.
- Additionally, each site can rent storage to temporarily store the resources.

Problem description (contd.)

Structure of the distribution network in a multi-period setting

Math Model: Sets & Parameters

Sets:

A: Set of all nodes

N: Set of all demand nodes

V: Set of all vehicles

T: Set of periods

L: Set of storage levels

Parameters:

Node 1: Warehouse

Nodes 2 to n + 1: Project sites

Node n+2: Warehouse (Duplicated node for the purpose of math

modelling only)

n: Number of demand nodes

 TC_{ijkt} : Travel cost from node i to node j in period t using vehicle k

 FCV_{kt} : Fixed cost of operating vehicle k in period t

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Math Model: Sets & Parameters

 SC_{ilt} : Storage cost of level I at node i in period t

 BC_{it} : Backorder cost per unit at node i in period t

 D_{it} : Demand at node i in period t

 C_k : Capacity of vehicle k

 S_{il} : Capacity at node i for level l

 τ_k^l : Resource loading time of vehicle k

 τ_{ijk}^t : Travel time from node *i* to node *j* by vehicle *k*

 $dist_{ij}$: Travel time from node i to node j

 ER_k : CO₂ emissions per meter travelled by vehicle k

 τ_{it}^s : Service time at node *i* in period *t*

 TW_{it}^{U} : Upper limit of time window at node i in period t

 TW_{it}^L : Lower limit of time window at node i in period t

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Math Model: Decision variables

 x_{ijkt} : equal to 1 if a vehicle k travels from node i to node j in period t

 y_{ikt} : equal to 1 if node i is assigned to vehicle k in period t

 v_{it} : equal to 1 if vehicle k is operated in period t

 t_{ikt}^a : Arrival time of vehicle k at node i during period t

 t_{ikt}^d : Departure time of vehicle k at node i during period t

 γ_{ikt} : Load in vehicle k after servicing node i during period t

 d_{ikt} : Number of units of resources delivered at node i in vehicle k during the period t

 I_{it} : Ending inventory in node i during period t

 B_{it} : Backorder quantity in node i during period t

 H_{ilt} : Equal to 1 if storage level I is rented at node i in period t

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Math Model: Objective function

The objective function, expressed in Eq. 1, minimises the total cost:

$$\min \sum_{i,j \in A} \sum_{k \in V} \sum_{t \in T} (TC_{ijkt} \times x_{ijkt}) + \sum_{k \in V} \sum_{t \in T} (FCV_{kt} \times v_{kt})$$

$$+\sum_{i\in A}\sum_{l\in I}\sum_{t\in T}(SC_{ilt}\times H_{ilt}) + \sum_{i\in A}\sum_{t\in T}(BC_{ilt}\times B_{it}). \tag{1}$$

The objective function, expressed in Eq. 2, minimises the total CO₂ emissions:

$$min \sum_{i,j\in A} \sum_{k\in V} \sum_{t\in T} (ER_k \times dist_{ijkt} \times x_{ijkt}), \tag{2}$$

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Dubai 13th Researc 2025 Conference

BAYNOUNAH GROUP

Math Model: Routing Constraints

$$\sum_{k \in V} y_{ikt} \leq 1, \forall i \in N, \forall t \in T$$

$$\sum_{j \in A} \sum_{k \in V} x_{ijkt} \leq 1, \forall i \in N, \forall t \in T$$

$$\sum_{j \in A} \sum_{k \in V} x_{jikt} \leq 1, \forall i \in N, \forall t \in T$$

$$\sum_{j \in A} x_{ijkt} = y_{ikt}, \forall i \in N, \forall k \in V, \forall t \in T$$

$$\sum_{j \in A} x_{jikt} = y_{ikt}, \forall i \in N, \forall k \in V, \forall t \in T$$

(7)

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Dubai 13th Research 2025 Conference

BAYNOUNAH GROUP

Math Model: Routing Constraints

$$x_{ijkt} + x_{jikt} \leq 1, \forall i, j \in N, \forall k \in V, \forall t \in T$$

$$x_{iikt} = 0, \forall i \in N, \forall k \in V, \forall t \in T$$

$$\sum_{j \in A} x_{1jkt} = \sum_{j \in A} x_{j(n+2)kt}, \forall k \in V, \forall t \in T$$

$$\sum_{j \in A} \sum_{k \in V} \sum_{t \in T} x_{j1kt} = 0$$

$$\sum_{j \in A} \sum_{k \in V} \sum_{t \in T} x_{(n+2)jkt} = 0$$

(12)

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Dubai 13th Research 2025 Conference

BAYNOUNAH GROUP

(13)

Math Model: Routing Constraints

$$y_{ikt} - y_{jkt} \leq 1 - x_{ijkt}, \forall i, j \in A, \forall k \in V, \forall t \in T$$

$$y_{ikt} \le y_{1kt}, \forall i \in N, \forall k \in V, \forall t \in T$$
 (14)

$$y_{1kt} \le \sum_{j \in N} x_{1jkt}, \forall k \in V, \forall t \in T$$
 (15)

$$\sum_{i \in A} y_{ikt} \le (n+2) \times v_{kt}, \forall k \in V, \forall t \in T$$
(16)

$$\sum_{i \in A} x_{ijkt} \le v_{kt}, \forall i \in A, \forall k \in V, \forall t \in T$$
 (17)

HONORING 60 YEARS OF PROJECT MANAGEMENT:

BAYNOUNAH GROUP

Math Model: Time Constraints

$$t_{1kt}^a = \tau_k^l, \forall k \in V, \forall t \in T$$
 (18)

$$t_{jkt}^{a} \ge t_{ikt}^{a} + \tau_{ijk}^{t} - M \times (1 - x_{ijkt}), \forall i, j \in A, \forall k \in V, \forall t \in T$$
 (19)

$$t_{ikt}^{d} \ge t_{ikt}^{a} + \tau_{it}^{s}, \forall i \in A, \forall k \in V, \forall t \in T$$
(20)

$$t_{ikt}^{a} \ge TW_{it}^{L}, \forall i \in A, \forall k \in V, \forall t \in T$$
(21)

$$t_{ikt}^d \le TW_{it}^U, \forall i \in A, \forall k \in V, \forall t \in T$$
 (22)

HONORING 60 YEARS OF PROJECT MANAGEMENT:

BAYNOUNAH GROUP

Math Model: Load Constraints

$$d_{ikt} \leq M \times y_{ikt}, \forall i \in A, \forall k \in V, \forall t \in T$$
 (23)

$$\gamma_{1kt} = \sum_{i \in A} d_{ikt}, \forall k \in V, \forall t \in T$$
 (24)

$$\gamma_{ikt} \ge \gamma_{jkt} + d_{jkt} - M \times (1 - x_{ijkt}), \forall i, j \in A, \forall k \in V, \forall t \in T$$
 (25)

$$\gamma_{ikt} \leq C_k, \forall i \epsilon A, \forall k \epsilon V, \forall t \epsilon T$$
 (26)

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Dubai 13th Research 2025 Conference

BAYNOUNAH GROUP

(27)

(28)

Math Model: Inventory Constraints

$$I_{it} \geq \sum_{t'=1}^{t} \sum_{k \in V} d_{ikt'} - \sum_{t'=1}^{t} D_{it'}, \forall i \in A, \forall t \in T$$

$$B_{it} \geq \sum_{t'=1}^{t} D_{it'} - \sum_{t'=1}^{t} \sum_{k \in V} d_{ikt'}$$
, $\forall i \in A, \forall t \in T$

$$I_{it} \leq \sum_{l \in I} (S_{il} \times H_{ilt}), \forall i \in A, \forall t \in T$$
 (29)

$$\sum_{i=1}^{n} H_{ilt} \leq 1, \forall i \in A, \forall t \in T$$
 (30)

$$\sum_{k \in V} \sum_{t \in T} d_{ikt} = \sum_{t \in T} D_{it}, \forall i \in N$$
(31)

HONORING 60 YEARS OF PROJECT MANAGEMENT:

ε-Constraint Method to address multiple objectives

 $\min f_1(x)$

s.t.

$$f_2(x) \leq \Omega$$

$$x \in X$$

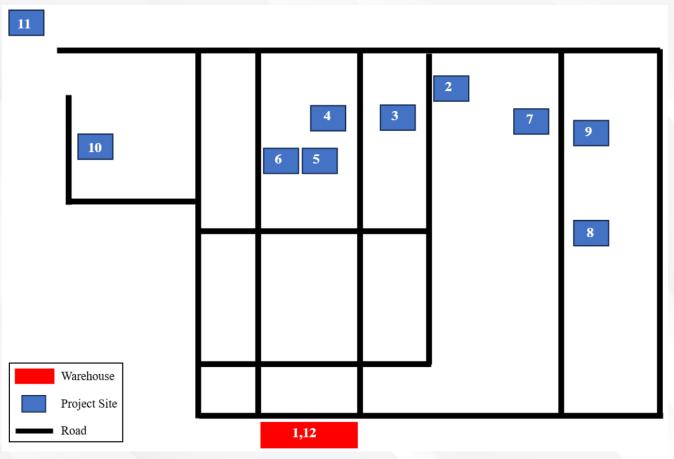
where $f_1(x)$ is the total cost and $f_2(x)$ is the total CO₂ emissions.

The Ω value for each iteration is computed as follows.

$$\varepsilon = \frac{f_2^{max}(x) - f_2^{min}(x)}{\alpha}$$

$$\Omega = f_2^{min}(x) + \varepsilon \times i, \quad \forall i = 0, 1, ..., \alpha$$

Case study


- A real-world power plant construction project in India.
- On average, the material demand was 150 metric tonnes. The entire project spanned 20 months.
- Two types of vehicles were used for material transportation, while containers served as on-site storage units.
- · Loading and unloading times were assumed to be constant, and all material handling activities were restricted to daylight hours due to the challenges of working at night.

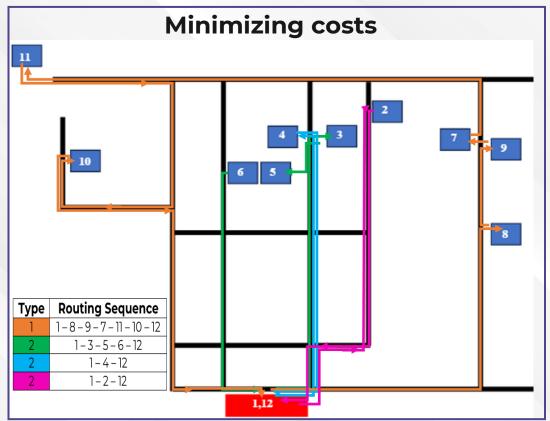
Case study (contd.)

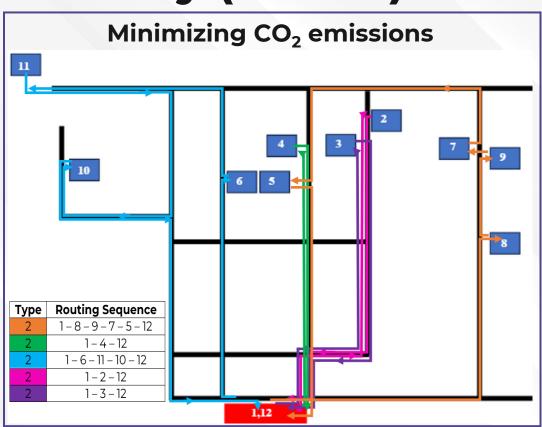
- For analysis, we consider 10 prominent sites over 3 periods.
- We only consider three periods as the demand was dynamic, and planning for longer periods is not viable.

Schematic diagram of the power plant project

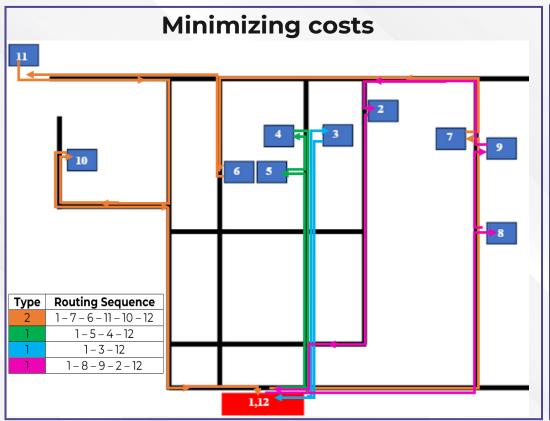
Results: Solving independently

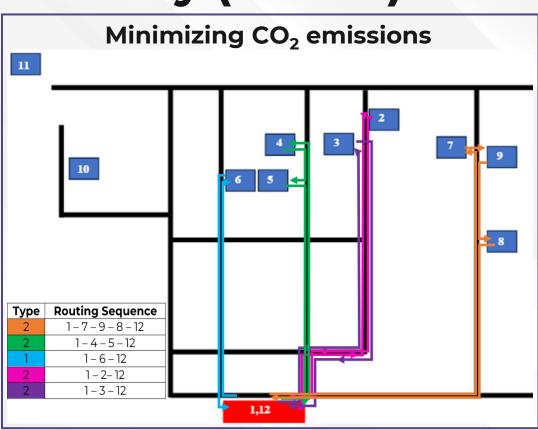
 The model is run for 600 seconds solving for each objective independently.


	Minimizing costs	Minimizing CO ₂ emissions
Primary objective function value	Rs. 10122.0825	4.7798 kg
Secondary objective function value	5.9174 kg	Rs. 17914.8768



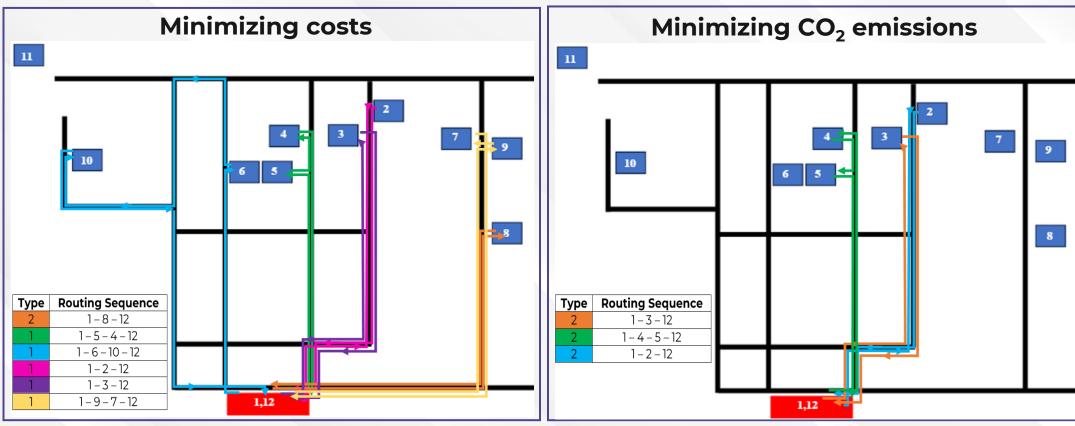
Results: Solving independently (contd.)


Period 1 routing



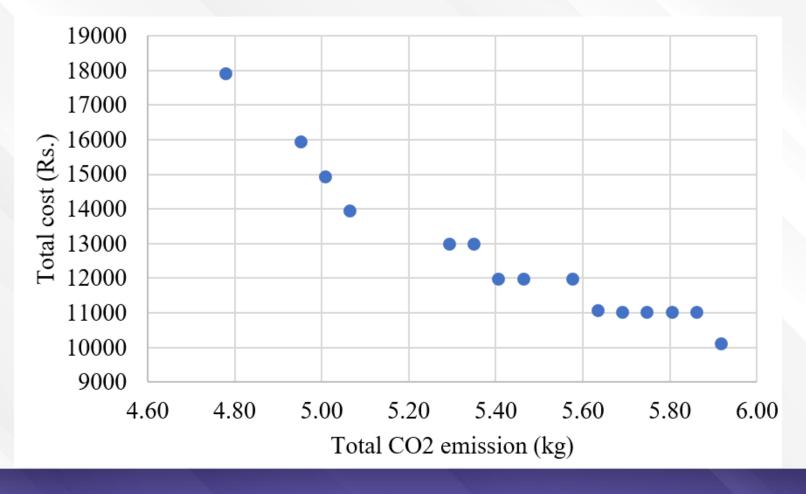
Results: Solving independently (contd.)

Period 2 routing

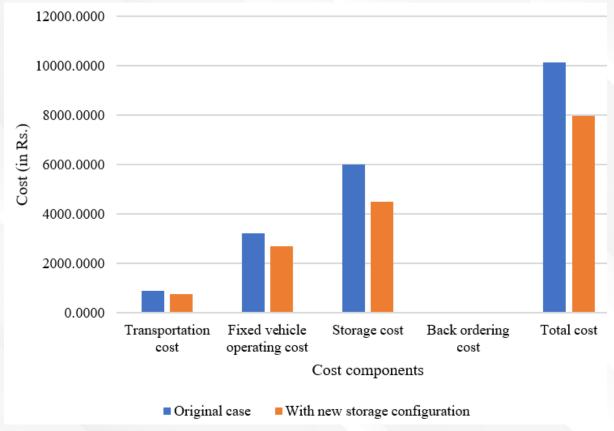


Results: Solving independently (contd.)

Period 3 routing



Results: Non-Dominated front



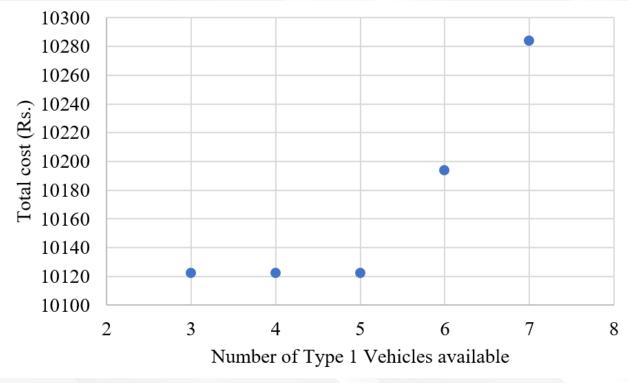
Results: Sensitivity analysis

A new storage option with a 10 MT capacity and a per-period cost of Rs. 500 was introduced, and the first objective function is minimized.

Best objective function value (Rs.)

Without 10 MT	With 10 MT
storage option	storage option
10122.0825	7967.7750

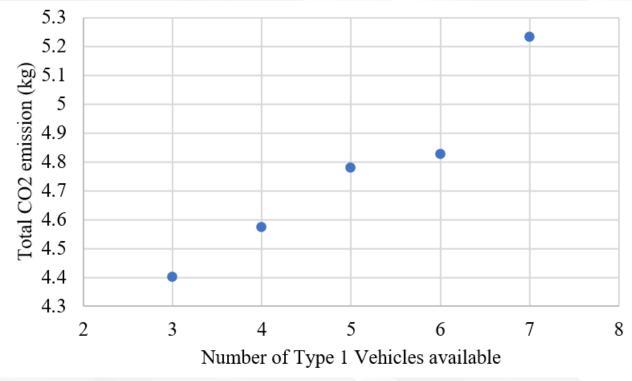
Cost Comparison Between Original and New Storage Configuration



Results: Sensitivity analysis (contd.)

We also have varied the number of Type 1 and Type 2 vehicles available and studied the impact on total cost.

	of vehicles lable	Total cost (in Rs.)
Type 1	Type 2	
3	7	10122.0825
4	6	10122.0825
5	5	10122.0825
6	4	10193.4925
7	3	10283.8773


Number of Type 1 vehicles available vs. Total cost

Results: Sensitivity analysis (contd.)

We also have varied the number of Type 1 and Type 2 vehicles available and studied the impact on total CO_2 emissions.

	of vehicles lable	Total emission (in kg)	
Type 1	Type 2		
3	7	4.4001	
4	6	4.5736	
5	5	4.7798	
6	4	4.8254	
7	3	5.2314	

Number of Type 1 vehicles available vs. Total CO₂ emissions

Conclusions

- A bi-objective optimisation framework has been developed that minimises both costs and emissions and employs the ε-constraint method to generate a non-dominated front.
- This model is adaptable to various multi-project scenarios requiring the movement of resources using a wide range of vehicles, including drones.

Source: CIN Magazine (2024)

Source: Royal Aeronautical Society (2024)

Future research

- The model's scalability could be improved by incorporating heuristics to handle larger instances.
- In addition, incorporating material demand and travel time uncertainty could provide a more robust solution.
- Further exploring the application of this model in different project types and integrating other sustainability metrics could further enhance its practical utility.

References

- Abdzadeh, B., Noori, S., Ghannadpour, S.F., 2022. Simultaneous scheduling of multiple construction projects considering supplier selection and material transportation routing. Autom Constr 140. https://doi.org/10.1016/j.autcon.2022.104336
- Afra, A.P., Kheirkhah, A., 2023. A Lagrangian heuristic for integrated production planning, material ordering and investment multi-project scheduling in a project-driven supply chain. Engineering Optimization. https://doi.org/10.1080/0305215X.2023.2276430
- Aliahmadi, M., Yaghoubi, S., Sadeghi, M., 2024. Inventory-scheduling problem in sustainable project supply chain under uncertainty. Environ Syst Decis. https://doi.org/10.1007/s10669-024-09975-w
- Alinaghian, M., Zamani, M., 2019. A bi-objective fleet size and mix green inventory routing problem, model and solution method. Soft comput 23, 1375–1391. https://doi.org/10.1007/s00500-017-2866-2
- Asadujjaman, M., Rahman, H.F., Chakrabortty, R.K., Ryan, M.J., 2024. Supply chain integrated resource-constrained multi-project scheduling problem. Comput Ind Eng 194. https://doi.org/10.1016/j.cie.2024.110380
- CIN Magazine, 2024. How will drone delivery affect the construction industry? [online] Available at: https://cinmagazine.co.uk/how-will-drone-delivery-affect-the-construction-industry/

References

- Darabad, S.D., Izadbakhsh, M., Ghannadpour, S.F., Nouri, S., Mohammad, M.M., 2024. A New Bi-Objective Green Construction Model for Multi Project Supply Chain Management under Uncertainty. International Journal of Industrial Engineering and Production Research 35. https://doi.org/10.22068/ijiepr.35.1.1813
- Ferreira, K.M., de Queiroz, T.A., Toledo, F.M.B., 2021. An exact approach for the green vehicle routing problem with two-dimensional loading constraints and split delivery. Comput Oper Res 136. https://doi.org/10.1016/j.cor.2021.105452
- He, N., Zhang, D.Z., Yuce, B., 2022. Integrated multi-project planning and scheduling a multiagent approach. Eur J Oper Res 302, 688–699. https://doi.org/10.1016/j.ejor.2022.01.018
- Royal Aeronautical Society, 2024. Drone and deliver. [online] Available at: https://www.aerosociety.com/news/drone-and-deliver/
- RezaHoseini, A., Noori, S., Ghannadpour, S.F., 2021. Integrated scheduling of suppliers and multi-project activities for green construction supply chains under uncertainty. Autom Constr 122. https://doi.org/10.1016/j.autcon.2020.103485
- Wang, Y., Rui Song, Zhao, Z., Zhao, R., Zhang, Z., 2024. A multimodal material route planning problem considering key processes at work zones. PLoS One 19. https://doi.org/10.1371/journal.pone.0300036

IPMA"

BAYNOUNAH GROUP

Thank you!

HONORING 60 YEARS OF PROJECT MANAGEMENT:

Appendix LEADING THE WAY INTO THE FUTURE

Distance Between Nodes (in metres)

Nodes	1	2	3	4	5	6	7	8	9	10	11	12
1	0	400	380	340	310	310	500	400	500	450	560	0
2	400	0	20	200	230	330	200	300	220	520	440	400
3	380	20	0	180	210	310	220	320	240	500	420	380
4	340	200	180	0	30	180	270	370	290	450	370	340
5	310	230	210	30	0	30	300	400	320	420	340	310
6	310	330	310	180	30	0	400	500	420	320	240	310
7	500	200	220	270	300	400	0	100	20	700	620	500
8	400	300	320	370	400	500	100	0	80	800	720	400
9	500	220	240	290	320	420	20	80	0	720	640	500
10	450	520	500	450	420	320	700	800	720	0	350	450
11	560	440	420	370	340	240	620	720	640	300	0	560
12	0	400	380	340	310	310	500	400	500	450	560	0

Material Demand at Sites During Different Time Periods

	Demand (in MT)				
	In both Period 3				
	1 and 2				
Sites 2 to 4	[8, 12]	[27, 32]			
Sites 5 to 11	[1, 3]	[6, 8]			

Storage Facility Parameters

Storage level	Capacity in MT	Cost per period (in Rs.)
1	20	1000
2	40	2000
3	60	3000

Appendix

LEADING THE WAY INTO THE FUTURE

Vehicle Parameters

Vehicle type	Capacity (in MT)	Fixed operating cost per period (in Rs.)	Speed (in kmph)	No. of vehicles available	CO ₂ emissi rate (kg/kn
1	18	230	30	5	0.4483
	10	150	30	_	0.3843

The carbon content in a litre of diesel is 0.734 kg (USEPA, 2005)*. The CO_2 emission per litre of diesel is 2.69 kg. The mileage of the vehicle is considered along with the CO_2 emission per litre to arrive at CO_2 emission per km travelled.

Backordering Costs

Site	Backorde cost per	•
	(in Rs.)	
2	15,000	
3	15,000	
4	7,000	
5	6,000	
6	6,000	
7	6,000	
8	6,000	
9	6,000	
10	6,000	
11	6,000	

^{*} USEPA, 2005. Average Carbon Dioxide Emissions Resulting from Gasoline and Diesel Fuel [WWW Document]. URL https://nepis.epa.gov/